Tip 1 – Absolute Value

- The absolute value of x, |x|, is regarded as the distance of x from zero.
- How do we convert the general interval into an expression using absolute value?
- Example: $10 \le x \le 30$
 - Step 1) Find the midpoint: $\frac{10+30}{2} = 20$
 - Step 2) Find the distance to either point: 20 10 = 10
 - Step 3) Substitute: $|x midpoint| \le distance$

Tip 1 – Absolute Value (cont.)

• If |x + 3| < 5, what is the value of x?

• If |x + 3| > 5, what is the value of x?

Tip 1 – Absolute Value (cont.)

• At a bottling company, a computerized machine accepts a bottle only if the number of fluid ounces is greater than or equal to $5\frac{3}{7}$ and less than or equal to $6\frac{4}{7}$. If the machine accepts a bottle containing f fluid ounces, which of the following describes all possible values of f?

A.
$$|f - 6| < \frac{4}{7}$$

B. $|f - 6| < \frac{3}{7}$
C. $|f + 6| > \frac{4}{7}$
D. $|6 - f| \le \frac{4}{7}$
E. $|f + 6| \le \frac{4}{7}$

Tip 1 – Absolute Value (cont.)

• At a milk company, Machine X fills a box with milk, and machine Y eliminates the milk-box if the weight is less than 450 grams, or greater than 500 grams. If the weight of the box that will be eliminated by machine Y is E, in grams, which of the following describes all possible values of E?

A.
$$|E - 475| < 25$$

B.
$$|E + 475| < 25$$

C.
$$|E - 500| > 450$$

D.
$$|475 - E| = 25$$

E.
$$|E - 475| > 25$$

Tip #2 - Ratio to Similar Figures

 Two polygons are similar if and only if their corresponding angles are congruent and their corresponding sides are in proportion

• If the ratio of the corresponding lengths is a:b, then the ratio of the areas is a^2 : b^2 and the ratio of the volumes is a^3 : b^3 .

Ratio to Similar Figures (cont)

• The ratio of the sides of 2 similar triangles is 5:2. If the area of the larger triangle is 30, what is the area of the smaller triangle?

- Solution
 - The ratio of areas is 25:4
 - 25k = 30 or k = 1.2
 - Therefore 4k = 4(1.2) = 4.8

Ratio to Similar Figures (cont.)

- In Triangle ABC, AB, PQ, & RS are parallel and the ratio of the lengths is AQ:QS:SC = 2:2:3. If the area of quadrilateral PRSQ is 48, what is the area of Triangle ABC?
 - A. 84
 - B. 92
 - C. 105
 - D. 144
 - E. 147

Tip 3: Combined Range of Two Intervals

Rules

If $5 \le A \le 10$ and $2 \le B \le 5$,

- $i. \qquad 7 \le A + B \le 15$
- *ii.* $10 \le A \times B \le 50$
- *iii.* $0 \le A B \le 8$
- *iv.* $1 \le \frac{A}{B} \le 5$

Smallest value \leq Combined Range \leq Largest Value

Example 1

• Given $2 \le P \le 8$ and $1 \le Q \le 4$. By how much is the maximum of $\frac{P}{Q} >$ the minimum of $\frac{P}{Q}$? i. Solution: max is $\frac{8}{1} = 8$ ii. Min is $\frac{2}{4} = \frac{1}{2} = .5$ *iii.* 8 - .5 = 7.5

Tip 3: Combined Range of Two Intervals (cont.)

• If -2 < x < 4 and -3 < y < 2, what are all possible values of x - y?

A. -4 < x - y < 2

- *B.* 1 < x y < 7
- *C.* 1 < x y < 4
- *D.* -4 < x y < 7
- *E.* -5 < x y < 7

Tip 3: Combined Range of Two Intervals (cont.)

• The value of p is between 1 and 4, and the value of q is between 2 and 6. Which of the following is a possible value of $\frac{q}{n}$?

A. Between
$$\frac{1}{2}$$
 and $\frac{2}{3}$
B. Between $\frac{2}{3}$ and 2
C. Between $\frac{1}{2}$ and 6
D. Between 2 and $\frac{1}{2}$
E. Between $\frac{1}{2}$ and $1\frac{1}{2}$

Tip 4: Classifying a Group in Two Different Ways

- Organize the information in a table and use a convenient number
 - Example: In a certain reading group organized of only senior and junior students, 3/5 of the students are boys, and the ratio of seniors to juniors is 4:5. If 2/3 of girls are seniors, what fraction of the boys are juniors?

	BOYS	GIRLS	
Seniors			4/9
Juniors			5/9
	3/5	2/5	1

Tip 4: Classifying a Group in Two Different Ways (cont.)

 On a certain college faculty, 4/7 of the professors are male, and the ratio of the professors older than 50 years to the professors less than or equal to 50 years is 2:5. If 1/5 of the male professors are older than 50 years, what fraction of female professors are less than or equal to 50 years.

	Males	Females	
> 50			2
≤ 50			5
	4	3	7

Tip 5: Direct Variation

- When 2 variables are related in such a way that y = kx, the 2 variables are said to be in direct variation.
- Expression of direct variation:

i.
$$y = kx$$

ii. $\frac{y}{x} = k$

- Geometric interpretation: y = kx is a special linear equation where the y intercept is (0, 0).
- In the xy coordinate plane, y = kx, where k is slope, but y - intercept must be zero.

Tip 5: Direct Variation (cont.)

 The value y changes directly proportional to the value of x. If y = 15 when x = 5, what is the value of y when x = 12.5?

Tip 5: Direct Variation (cont.)

- The 2 adjoining triangles are similar. What is the length of side DF?
 - 6
 - $-\frac{82}{13}$ $-\frac{90}{13}$
 - 8
 - $-\frac{100}{13}$

Tip 6: Inverse Variation

- When 2 variables are related in such a way that xy = k, the two variables are said to be in inverse variation.
 - Properties:
 - The value of two variables change in an opposite way; that is, as one variable increases, the other decreases.
 - The product k is unchanged

Tip 7: Special Triangles

- Angle-based Right Triangle
 - 30-60-90 triangle
 - In a triangle whose angles are in the ratio 1:2:3, the sides are in the ratio $1, \sqrt{3}, 2$
 - 45-45-90 Triangle
 - In a triangle whose 3 angles are in the ratio 1:1:2, the sides are in the ratio 1, 1, $\sqrt{2}$
- Side-based triangles
 - Right triangles whose sides are Pythagorean triples as follows.

3:4:5	5:12:13	8:15:17
7:24:25	9:40:41	11:60:61

Tip 7: Special Triangles (cont.)

- An equilateral triangle ABC is inscribed inside a circle with radius = 10.
 - What is the area of $\triangle ABC$?

Tip 7: Special Triangles (cont.)

- Figure ABDE is a square and Δ BCD is an equilateral triangle. If the area of Δ BCD is $16\sqrt{3}$
 - What is the area of the square?
 - A. 32
 - *B.* $32\sqrt{3}$
 - C. 64
 - *D.* $64\sqrt{2}$
 - E. 72

Tip 8: Exponents

• The exponent is the number of times the base is used as a factor.

$$5^{2} = 25 \begin{cases} 5 = base \\ 2 = exponent \\ 25 = power \end{cases}$$

• The mathematical operations of exponents are as follows:

$$a^m \cdot a^n = a^{m+n}$$

$$2. \quad (a^m)^n = a^{m \cdot n}$$

$$3. \quad (ab)^m = a^m \cdot b^m$$

$$a^{-m} = \frac{1}{a^m}$$

5.
$$a^0 = 1$$

$$6. \quad \frac{a}{a^n} = a^{m-n}$$

$$7. \quad \left(\frac{a}{b}\right)^m = \frac{a^m}{b_m^m}$$

$$\mathbf{\mathcal{S}}, \quad \sqrt[n]{a^m} = a^{\frac{m}{n}}$$

- 1. If $\{(-2)^3 \cdot 8^2\}^4 = (2^4)^n$, what is the positive value of *n*?
 - A. 6
 - *B*. 7
 - *C.* 8
 - D. 9
 - *E.* 10

- If 4³+ 4³+ 4³+ 4³ = 2ⁿ, what is the value of *n*?
 - A. 2
 - B. 4
 - C. 6
 - D. 8
 - E. 10

• If m and n are positive and $5m^5n^{-3} = 20m^3n$ what is the value of m in terms of n?

$$A. \quad \frac{1}{4n}$$
$$B. \quad \frac{4}{n^2}$$
$$C. \quad \frac{4}{n^3}$$
$$D. \quad 2n^2$$
$$E. \quad 4n^2$$

- If a and b are positive integers, $(a^{-4}b)^{-1} = 16$, and $b = a^2$, which could be true of the value of a?
 - a. 0
 - b. 2
 - c. 4
 - d. 8
 - e. 12

- If $k^{-2} \times 2^3 = 2^7$, what is the value of k?
 - A. 2
 - B. 4
 - C. 8
 - *D.* $\frac{1}{4}$ *E.* $\frac{1}{8}$

Tip 8: Practice (cont.)

- If p and q are positive integers, $p^{-3} = 2^{-6}$, and $q^{-2} = 4^2$, what is the value of pq ?
 - a. 1
 - b. 2
 - c. 3
 - d. 4
 - e. 5

Tip 9: Geometric Probability

 Geometric Probability is the probability dealing with the areas of regions instead of the "number" of outcomes. The equation becomes

• $Probability = \frac{Favorable Region}{Area of Total Region}$

Tip 8: Practice (last 1)

- If a and b are positive integers and $(a^6b^4)^{\frac{1}{2}} = 675$, what is the value of a + b?
 - a. 3
 - b. 4
 - c. 5
 - d. 7
 - e. 8